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Abstract

Tree polyominoes, or lattice trees, are cycle-free polyominoes. In this
article, we focus on the problem of generating tree polyominoes of maximal
area M(h,w) inscribed in a rectangle of height h and width w. By ex-
tending an algorithm of Jensen, we describe a method for generating such
maximal trees based on lower and upper theoretical bounds for M(h,w).
We also study the families of tree polyominoes called kiss-free polyominoes
and snake polyominoes i.e. trees with exactly two leaves.
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1 Introduction and Definitions

Polyominoes are geometrical objects that have recently been the subject of
numerous investigations, either from a recreational [2], combinatorial or applied
[3] perspective. They appear as models in different physical phenomenon such
as percolation and the study of isomeres.

Simply stated, polyominoes are edge-connected sets of square cells of unit
length in the discrete square plane considered up to translation. The area of a
polyomino P is the number of cells it contains and we denote it by c(P ). In this
paper we are interested in the study of tree polyominoes, also called lattice trees
by some authors. They are characterized by the property that their dual edge
graph is acyclic. Snake polyominoes form the subfamily of tree polyominoes
having exactly two cells of degree one. They have been investigated in [4].
For sake of brevity, snake polyominoes and tree polyominoes are simply called
snakes and trees. Similarly a forest is a collection of non edge-connected trees
in the plane.

A tree polyomino is called kiss-free if it does not contain any 2× 2 rectangle
such that one diagonal is occupied and the other is not.

We consider polyominoes inside rectangular grid graphs which consist of
h× w unit squares and (h + 1)× (w + 1) vertices (see Figure 1). A polyomino
can be represented as a set of cells in the rectangular grid. Each cell in the
rectangular grid is denoted by (i, j), where i is the row and j is the column as
in the matrix index notation. The cell (1, 1) is therefore in the upper left corner
of the grid.

The perimeter of a polyomino P , denoted by p(P ), is the number of unit
length edges on the boundary of P . The point-perimeter of P , denoted by pp(P ),
is the number of vertices with integral coordinates lying on the boundary of P .
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Figure 1: (a) The rectangular grid graph 5× 7. (b) A kiss-free tree . (c) A snake with kissing
number 2.

Notice that perimeter and point-perimeter coincide if and only if the polyomino
is kiss-free. Otherwise the perimeter is larger than the point-perimeter. The
kissing number k(T ) of a tree T is the number of corner only contacts between
two cells ci, cj with at least two cells between them. For example the kissing
number of the snake in Figure 1 c) is 2.

We end this introduction by proving elementary identities linking the area,
the perimeter, the point perimeter and the kissing number of trees.

Proposition 1. Let T be a nonempty tree. Then

(i) p(T ) = 2(c(T ) + 1);

(ii) p(T ) = pp(T ) + k(T ).

Proof. (i) By induction on c(T ). If c(T ) = 1, then T has a single cell with
perimeter 4 and the equality follows. Now, let T be a tree with c(T ) cells and
let T ′ be a tree obtained by removing any leaf cell ` from T . Clearly, T ′ contains
c(T )− 1 cells and its perimeter is 2c(T ) by the induction hypothesis. Since ` is
a leaf, 3 out of 4 of its edges contribute to the perimeter of T and one edge is
attached to T so that the perimeter of T is 2c(T ) + 3− 1 = 2(c(T ) + 1).

(ii) This follows directly from the definition of a kiss.

2 Kiss-Free Trees

Before addressing the problem of generating maximal trees and snakes inscribed
in a given rectangle of dimensions h×w (Section 3), we concentrate on kiss-free
trees and snakes. It turns out that the maximum area in that case is easy to
establish, therefore solving a conjecture appearing in [4].

Theorem 1. The maximal area of a kiss-free tree contained in a rectangle of
size h× w is ⌊

(h + 1)(w + 1)

2

⌋
− 1. (1)

Moreover the maximal area is realized by a snake for all values of h and w.
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(a) (b) (c)

Figure 2: Kiss-free snakes of maximal area (a) 5 × 7 (b) 4 × 6 (c) 2 × 6.

Before proving Theorem 1, we construct, for any positive integers h and k,
the following snakes. If w is odd (see Figure 2(a)), let

S(h,w) =


{(i, w) | 1 ≤ i ≤ h}, if w = 1;

S(h,w − 2) ∪ (h,w − 1) ∪ {(i, w) | 1 ≤ i ≤ h}, if w ≡ 1 mod 4;

S(h,w − 2) ∪ {(1, w − 1)} ∪ {(i, w) | 1 ≤ i ≤ h}, if w ≡ 3 mod 4.

The snake S(h,w), where h is odd, is defined symmetrically. Now, assume that
w is even (see Figure 2(b)) and let

S(2, w) =


{(1, 1), (2, 1), (1, 2)}, if w = 2;

S(2, w − 2) ∪ (1, w − 1) ∪ (2, w − 1) ∪ (1, w), if w ≡ 0 mod 4;

S(2, w − 2) ∪ (1, w − 1) ∪ (2, w − 1) ∪ (2, w), if w ≡ 2 mod 4.

Clearly, the snake S(h, 2), where h is even is defined similarly. Finally if h,w ≥ 4
are both even (see Figure 2(c)), let

S(h,w) =

{
S(h,w − 3) ∪ (1, w − 2) ∪ S(h, 2), if w ≡ 0 mod 4;

S(h,w − 3) ∪ (h,w − 2) ∪ S(h, 2), if w ≡ 2 mod 4.

Using the recursive definition and induction, it is straightforward to prove
that the area of S(h,w) is exactly b(w + 1)(h+ 1)/2c− 1. We are now ready to
prove Theorem 1.

Proof of Theorem 1. Let c(T ) be the area of a maximal kiss-free tree polyomino
T inscribed in a h×w rectangle. The inequality c(T ) ≥ b(w + 1)(h + 1)/2c − 1
follows from the construction of the snakes S(h,w). It remains to prove that
c(T ) ≤ b(w + 1)(h + 1)/2c − 1.

We know from Proposition 1 that T has perimeter 2(c(T ) + 1). Moreover,
since T is kiss-free, its point-perimeter is also 2(c(T ) + 1). But the rectangular
grid graph of size h×w has exactly (h+1)(w+1) vertices, therefore 2(c(T )+1) ≤
(h + 1)(w + 1) which implies that

c(T ) ≤
⌊

(h + 1)(w + 1)

2

⌋
− 1.

since c(T ) is an integer.
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Figure 3: The basic idea of Jensen’s algorithm. Black dots correspond to the current cell. (a)
Some valid configuration. The status of each cell (0, 1, 2, 3 or 4) on the boundary is indicated.
(b) An extension of the configuration in (a) by occupying the current cell. (c) An extension
of the configuration in (a) obtained by leaving empty the current cell.

Theorem 1 is not that surprising when related to Hamiltonian cycles. Indeed,
kiss-free trees of maximal area included in a h×w rectangle are in bijection with
Hamiltonian cycles of the rectangular grid graph when at least one of the integers
w, h is odd. However, if both integer dimensions of the rectangle are even, the
grid graph has no Hamiltonian cycle but tree polyominoes of maximal area still
exist. The problem of constructing and counting the number of Hamiltonian
cycles in a rectangular grid graph has been investigated twenty years ago (see
for instance [7]) and one-variable (w) ordinary generating functions for the first
fixed values of h were expanded.

3 Trees and Snakes with Kisses

The problem of enumerating, counting or even computing the maximal area
of trees and snakes inscribed in a given rectangle seems more involved. As a
first step, for computational exploration purposes, it seems natural to design an
algorithm for computing and enumerating such objects.

3.1 Computer Exploration

Different algorithms have been proposed for the enumeration of polyominoes
[8, 1, 5, 6]. The most efficient known method is based on a transfer matrix,
first introduced by Conway [1] and then improved by Jensen [5] and Knuth
[6]. By adaptating Jensen’s algorithm, it is not difficult to derive a method for
enumerating snakes and trees of given area n inscribed in a given rectangle.

The basic idea of Jensen’s algorithm is illustrated in Figure 3. It starts with
an empty matrix and it fills its content with occupied/free cells columnwise,
from top to bottom (see Figure 3). Information about connectedness can be
compactly stored by considering only the boundary on the rightmost part of the
partial configuration. The boundary is updated by a transfer matrix describing
the rules for updating and discarding configurations. Both the current and above
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cell are updated to keep track of the connectedness. For instance, in Figure 3,
configuration (b) is obtained from configuration (a) by occupying the current
cell, and the upper and left cells are updated accordingly so that 2, 1 becomes
3, 2. By contrast, still in Figure 3, configuration (c) is obtained from (a) by
leaving empty the current cell. The middle connected components marked with
×, can thus never be connected to the other component and the configuration
is discarded.

When a cycle is created, it can be easily detected. In the same spirit, snakes
can be enumerated by forbidding trees having more than two leaves. Finally,
kisses can be detected locally by inspecting the current cell and its neighborhood.

A major advantage of Jensen’s algorithm is that it prunes the search space
very efficiently. More precisely, at each step, it computes the minimum number
of cells that are needed in order to connect all parts of the current configuration,
as well as making sure it touches the bottom, the top and the right side of the
rectangle. If the number of cells needed is too high for the wished area, the
configuration is then discarded. In other words, a lower bound is computed to
discard unpromising configurations.

In the case where one wishes to enumerate maximal inscribed trees and
snakes, the situation is the opposite, i.e. we need to compute an upper bound
for the current configuration. More precisely, we determine a maximum number
of cells that can be added, and if this number is smaller than the current best
solution, then the configuration can be discarded. Such an upper bound is
provided by Proposition 2 in Subsection 3.2.

3.2 Upper Bound of Trees Area

We now provide upper bounds for the value M(h,w). As a first step, we show
that at most 3/4 of the rectangle area can be occupied, with a correction when
either w or h is odd.

Proposition 2. Let F be a forest inscribed in a h×w rectangle, with h,w ≥ 2.
Then

c(F ) ≤ 3(hw + h mod 2 + w mod 2)

4
. (2)

Proof. The different cases are shown in Figure 4.
If both h and w are even, then the rectangle can be partitioned in hw/4

subrectangles of dimensions 2 × 2. Since F does not contain any cycle, only 3
out of 4 cells may belong to the forest in each subrectangle. Therefore, c(F ) ≤
3hw/4.

Now assume that one dimension is 3. With no loss of generality, let w = 3
and h ≥ 2 be any integer. We prove by induction on h that Inequation (2)
holds. Inspection shows that Inequation (2) holds for h = 2, 3, 4, 5. Now, let
h ≥ 6. If we partition the h× 3 rectangle into two subrectangles of dimensions
(h − 4) × 3 and 4 × 3, by induction hypothesis, we have that the area of F is
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Figure 4: The three cases of Proposition 2. (a) If h and w are both even, then the rectangle
can be divided in subrectangles of dimension 2×2. (b) If one dimension is even and the other
is odd, then the rectangle can be divided in a subrectangle h×3 (or 3×w) and a subrectangle
h× (w − 3) of even dimensions. (c) If both h and w are odd, then the rectangle is divided in
subrectangles of dimensions 3 × w, (h− 3) × 3 and (h− 3) × (w − 3).

bounded by
3

4
[(h− 4) · 3 + 1] + 9 =

3

4
(h · 3 + 1),

so that Inequation (2) holds.
Consider the case where w is odd and h is even (the case w even, h odd is

symmetric). Since the rectangle can be partitionned into two subrectangles of
dimensions h× 3 and h× (w− 3) and by the two previous paragraphs, the area
of F is bounded by

3

4
[h · 3 + 1] +

3

4
[h(w − 3)] =

3

4
(hw + 1),

again verifying Inequation 2.
The case where both h and w are odd is follows from the previous paragraphs

and the decomposition depicted in Figure 4(c).

Using the upper bound of Proposition 2 in our algorithm, we were able to
compute different statistics found in Appendix A.

3.3 Lower Bound of Trees Maximal Area

Proposition 3. Let M(w, h) be the maximal area of a tree inscribed in a h×w
rectangle. Then

M(w, h) ≥


⌊
2wh+w+h−1

3

⌋
− 3, if w or h ≡ 1 mod 3;⌊

2wh+w+h−1
3

⌋
− 2−

⌊
(min {w,h}−4)

12

⌋
, if w or h ≡ 0 mod 3;⌊

2wh+w+h−1
3

⌋
− 3−

⌊
min {w,h}−4

6

⌋
if w and h ≡ 2 mod 3.

Sketch of proof. The proof is constructive. We build a tree T with the given
area in three steps. The first step is the construction of a polyomino in a strip
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Figure 5: An example of forest polyominoes of almost maximal area for each case considered
in the proof of Proposition 3. Region 1 appears in cyan, Region 2 in green and Region 3 in
blue. All forests can be transformed into trees by moving each cell marked with an X.

of width two inside the rectangle and along the four sides of the rectangle. Call
this rectangular strip Region 1 (colored in cyan in Figure 5). This polyomino is
made of a first full rectangular strip of width one along the perimeter minus one
cell to prevent the formation of a cycle. The second strip is also rectangular of
width one inside the first strip and contains one cell of T in every other position
of the strip. An easy calculation shows that the number of cells occupied by T
in Region 1 is at least 3/4 of the area of Region 1 minus one depending on the
parity of w and h. More precisely we have

c(T ∩ Region 1) ≥
⌊

3

4
c( Region 1)

⌋
− 1

In the remaining rectangle of size (h−2)× (w−2), starting from the top, we
form as many horizontal strips of heigth 3 as possible. This part of the rectangle
is called Region 2 (colored in green in Figure 5) and the remaining part, called
Region 3 (appearing in blue in Figure 5), is a rectangle of size 1 × (w − 4) or
2× (w−4). For each rectangle 3× (w−4) in Region 2, we exhibit a tree of area
at least 2/3 the area of the rectangle minus one. If Region 3 is a 1 × (w − 4)
rectangle, we can insert one cell in every other position of the row so that the
set of cells covers 1/2 of the area of the rectangle. If Region 3 is a 2× (w − 4)
rectangle (see Figure 5(b)), we can insert a set of cells in the rectangle which
covers 5/8 of the area of the rectangle. This is because the number of cells in
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each column follows a periodic pattern with period of the form 2, 1, 1, 1. Adding
all the proportions from each region, we obtain the expression in Proposition 3.
At the end of this construction, the rectangle is filled with a forest of trees that
can relatively be transformed into a tree by moving few cells.

We conclude this discussion on a lower bound of trees of maximal area by
observing that experimentation shows that the more compact formula⌊

(2h + 1)(2w + 1)− 4

6

⌋
is a tight approximation for the maximal area of inscribed trees and that in fact,
it seems to differs from the real maximum by a small constant.

There is another observation that was made in the course of our experimen-
tations and investigation. Indeed, it seems that a forest inscribed in a given
rectangle can never have an area greater than the area of a tree of maximum
area in the same rectangle:

Conjecture 1. The area of a forest included in a h×w rectangle never exceeds
the area of a single tree of maximal area inscribed in the same rectangle.

Assuming Conjecture 1 is true, the speed of our enumeration algorithm could
be significantly improved, since the values computed for smaller rectangles could
be used as upper bounds when processing larger rectangles.
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A Computations

h
w

2 3 4 5 6 7 8 9 10

2 3 5 6 8 9 11 12 14 15
3 5 7 9 11 14 16 18 20 22
4 6 9 11 14 17 20 22 25 28
5 8 11 14 17 21 24 27 30 34
6 9 14 17 21 24 29 32 36 40
7 11 16 20 24 29 33 38 42 46
8 12 18 22 27 32 38 42 48 52
9 14 20 25 30 36 42 48 ? ?
10 15 22 28 34 40 46 52 ? ?

Table 1: Maximal area of snakes inscribed in a rectangle h× w.

h
w

2 3 4 5 6 7 8 9 10

2 4 2 6 2 8 2 10 2 12
3 2 8 14 18 2 4 6 8 10
4 6 14 84 26 32 16 152 48 24
5 2 18 26 56 4 24 32 108 2
6 8 2 32 4 136 10 168 32 8
7 2 4 16 24 10 52 4 8 200
8 10 6 152 32 168 4 216 8 192
9 2 8 48 108 32 8 8 ? ?
10 12 10 24 2 8 200 192 ? ?

Table 2: Number of maximal snakes inscribed in a rectangle h× w.
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h
w

2 3 4 5 6 7 8 9 10

2 3 5 6 8 9 11 12 14 15
3 5 7 9 12 14 16 18 21 23
4 6 9 12 15 18 21 24 27 30
5 8 12 15 19 22 26 30 34 37
6 9 14 18 22 26 31 35 39 44
7 11 16 21 26 31 36 41 46 51
8 12 18 24 30 35 41 46 52 58
9 14 21 27 34 39 46 52 59 65
10 15 23 30 37 44 51 58 65 72

Table 3: Maximal area of maximal trees inscribed in a rectangle h× w.

h
w

2 3 4 5 6 7 8 9 10

2 4 2 10 4 24 8 56 16 128
3 2 10 26 2 10 50 194 4 32
4 10 26 32 50 56 64 72 80 88
5 4 2 50 22 608 182 16 2 188
6 24 10 56 608 4120 208 1968 22716 168
7 8 50 64 182 208 488 560 1050 1096
8 56 194 72 16 1968 560 65864 14340 536
9 16 4 80 2 22716 1050 14340 166 3296
10 128 32 88 188 168 1096 536 3296 1296

Table 4: Number of maximal trees inscribed in a rectangle h× w.

2 3 4 5 6 7 8 9 10
2 3 5 6 8 9 11 12 14 15
3 5 7 9 11 13 15 17 19 21
4 6 9 11 14 16 19 21 24 26
5 8 11 14 17 20 23 26 29 32
6 9 13 16 20 23 27 30 34 37
7 11 15 19 23 27 31 35 39 43
8 12 17 21 26 30 35 39 44 ?
9 14 19 24 29 34 ? ? ? ?
10 15 21 26 32 ? ? ? ? ?

Table 5: Maximal area of maximal kiss-free snakes inscribed in a rectangle h× w.
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2 3 4 5 6 7 8 9 10
2 4 2 6 2 8 2 10 2 12
3 2 4 6 10 14 20 26 34 42
4 6 6 32 10 64 30 228 40 344
5 2 10 10 24 38 96 116 224 370
6 8 14 64 38 256 170 1096 416 3760
7 2 20 30 96 170 576 1098 2698 5322
8 10 26 228 116 1096 1098 14552 3628 ?
9 2 34 40 224 416 ? ? ? ?
10 12 42 344 370 ? ? ? ? ?

Table 6: Number of maximal kiss-free snakes inscribed in a rectangle h× w.

h
w

2 3 4 5 6 7 8 9 10

2 3 5 6 8 9 11 12 14 15
3 5 7 9 11 13 15 17 19 21
4 6 9 11 14 16 19 21 24 26
5 8 11 14 17 20 23 26 29 32
6 9 13 16 20 23 27 30 34 37
7 11 15 19 23 27 31 35 39 ?
8 12 17 21 26 30 35 39 ? ?
9 14 19 24 29 34 ? ? ? ?
10 15 21 26 32 37 ? ? ? ?

Table 7: Maximal area maximal kiss-free trees inscribed in a rectangle h× w.

h
w

2 3 4 5 6 7 8 9 10

2 4 2 10 4 24 8 56 16 128
3 2 6 14 37 92 236 596 1517 3846
4 10 14 144 154 1984 1696 26252 18684 337640
5 4 37 154 1072 5320 32675 175294 1024028 5668692
6 24 92 1984 5320 145984 301384 10155528 17066492 681908296
7 8 236 1696 32675 301384 4638576 445348242 681728204 ?
8 56 596 26252 175294 1015528 494483138 ? ? ?
9 16 1517 18684 1024028 17066492 ? ? ? ?
10 128 3846 337640 5668692 681908296 ? ? ? ?

Table 8: Number of maximal kiss-free trees inscribed in a rectangle h× w.
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